_
-
Q
~
Ν
0
Q
2
Ξ
⊐
Q
≥
≥
≥
`
\sim
_
7
=
_

STUDY MODULE DESCRIPTION FORM						
Name of the module/subject Physical Chemistry II		Code				
Field of study	Profile of study (general academic, practical)	Year /Semester				
Chemical and Process Engineering	general academic	2/4				
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) compulsory				
Cycle of study:	Form of study (full-time,part-time)					
First-cycle studies	full-time					
No. of hours		No. of credits				
Lecture: 15 Classes: - Laboratory: 45	Project/seminars:	- 5				
Status of the course in the study program (Basic, major, other)	(university-wide, from another fie	eld)				
basic	unive	rsity-wide				
Education areas and fields of science and art		ECTS distribution (number and %)				
		2.5 100%				
		2.5 100%				
Responsible for subject / lecturer:						
Prof. Andrzej Lewandowski						

tel. 061 665 23 09 Wydział Technologii Chemicznej

ul. M. Skłodowskiej-Curie 5, 60-965 Poznań

e-mail: andrzej.lewandowski@put.poznan.pl

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	W1 have a basic knowledge of general chemistry (writing chemical reactions, conversion levels, knowledge of basic laboratory glassware and laboratory equipment) W2 have a basic knowledge of mathematics and physics necessary to understand issues of physical chemistry (fundamental laws of physics, the camera differential)
2	Skills	U1 - able to prepare solutions of the concentrations, can handle the weight U2 able to apply known mathematical apparatus for calculation of physicochemical
3	Social competencies	K1 - Understands the need and knows the possibilities of lifelong learning

Assumptions and objectives of the course:

To acquaint the student with basic issues of physical chemistry at university level in the field: chemical kinetics, reaction of simple and complex, catalysis of homo-and heterogeneous

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Able to define and explain the basic concepts and ideas in the field of chemical kinetics, such as the rate of the reaction, rate law and rate constans, half-lives ant time constans, activation energy, activated complex theory, Arrhenius equation, transition state theory, Eyring equation [K_W03, K_W10]
- 2. Able to characterize, replace and recognize elementary and complex reactions, able to define homo-and heterogeneous catalysis, give examples and practical application [K_W03, K_W10]

Skills:

- 1. Is able to obtain information from the literature, internet, databases and other sources. Can integrate the information to interpret and learn from them, create and justify opinions [K_U01]
- 2. Is able to plan and carry out simple experiment [K_U07, K_U08]
- 3. Has the ability to self-educate using modern teaching tools such as remote lectures, webpages and databases, educational software, electronic books[K_U05]
- 4. Able to develop, describe and present the results of an experiment or theoretical calculation[K_U07, K_U08]

Social competencies:

Has a sense of responsibility for one's own work and is willing to comply with the principles of teamwork and taking responsibility for collaborative tasks.[K_K04]

Assessment methods of study outcomes

Current control during laboratory classes. Lectures completed a written exam. Students are classified on the basis of laboratory generated points from the plan and perform the experiment, the implementation of the report.

dst 70-85 points

dst+ 86-90 db 91-100 db+ 101-110 bdb 111-120

Course description

Chemical kinetics: the rates of reactions, rate law and rate constants, first order reactions, half-lives and time constants, second-order reactions, the temperature dependence of reaction rates (Arrhenius equation)

The reaction product is formed directly from the activated complex:

The concept of an active complex., the temperature dependence of reaction rates - Arrhenius equation - Eyring equation. Enthalpy and entropy of activation. The relationship between the parameters of the Arrhenius equation and Eyring'a. Two barriers to the reaction: energy and structural (energy and entropy of activation). Pressure effect on the rate of reaction gas. The kinetic analysis of complex reaction: consecutive reactions, parallel reactions, competing reactions, chain reactions, reversible reactions.

Homogeneous catalysis: The types of homogeneous catalysts in a solution liquid state. Catalyzed reaction rate dependence on the amount of catalyst. Enzymes. Heterogeneous catalysis: The principle of operation of solid heterogeneous catalysts. The carrier of the catalyst. Examples of different mechanisms of catalysis on contact. The rate of diffusion limited process.. Explosive reactions: power of explosion, he detonation, deflagration

Basic bibliography:

- 1. K. Pigoń, Z. Ruziewicz, Chemia Fizyczna, PWN Warszawa 2005.
- 2. P. Atkins, ChemiaFizyczna, PWN, Warszawa 2001.
- 3. J. Sobkowski, Chemia jądrowa, PAN, Warszawa 1981.
- 4. St. Magas, Technika Izotopowa, WPP 1994 (skrypt nr.1794).
- 5. A. Molski, Wprowadzenie do kinetyki chemicznej WNT warszawa 2000.
- L. Sobczyk , Eksperymentalna Chemia Fizyczna, PWN Warszawa 1982

Additional bibliography:

- 1. P. Atkins, Podstawy Chemii Fizycznej, PWN, Warszawa 1999
- 2. L. Sobczyk, A. Kisza, Chemia fizyczna dla przyrodników PWN Warszawa 1977
- 3. J. Minczewski, Chemia analityczna, PWN Warszawa 1975.
- 4. H. Buchnowski, W. Ufnalski Wykłady z chemii fizycznej WNT Warszawa 1998
- A. Lewandowski, St. Magas, Wiadomości do ćwiczeń laboratoryjnych z chemii fizycznej, WPP, Poznań 1994 (skrypt nr 1765).

Instrukcje do ćwiczeń laboratoryjnych z chemii fizycznej.

Result of average student's workload

Activity	Time (working hours)
Exam	12
Preparation for laboratory	36

Student's workload

Source of workload	hours	ECTS
Total workload	120	5
Contact hours	65	2
Practical activities	92	3